A line search approach for high dimensional function optimization
نویسندگان
چکیده
This paper proposes a modified line search method which makes use of partial derivatives and re-starts the search process after a given number of iterations by modifying the boundaries based on the best solution obtained at the previous iteration (or set of iterations). Using several high dimensional benchmark functions, we illustrate that the proposed Line Search Re-Start (LSRS) approach is very suitable for high dimensional global optimization problems. Performance of the proposed algorithm is compared with two popular global optimization approaches, namely, genetic algorithm and particle swarm optimization method. Empirical results for up to 10,000 dimensions clearly illustrate that the proposed approach performs very well for the tested high dimensional functions.
منابع مشابه
One-Dimensional Modeling of Helicopter-Borne Electromagnetic Data Using Marquardt-Levenberg Including Backtracking-Armijo Line Search Strategy
In the last decades, helicopter-borne electromagnetic (HEM) method became a focus of interest in the fields of mineral exploration, geological mapping, groundwater resource investigation and environmental monitoring. As a standard approach, researchers use 1-D inversion of the acquired HEM data to recover the conductivity/resistivity-depth models. Since the relation between HEM data and model ...
متن کاملEM323: a line search based algorithm for solving high-dimensional continuous non-linear optimization problems
This paper presents a performance study of a one-dimensional search algorithm for solving general high-dimensional optimization problems. The proposed approach is a hybrid between a line search algorithm of Glover (The 3-2-3, stratified split and nested interval line search algorithms. Research report, OptTek Systems, Boulder, CO, 2010) and an improved variant of a global method of Gardeux et a...
متن کاملA Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations
Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...
متن کاملAN OPTIMUM APPROACH TOWARDS SEISMIC FRAGILITY FUNCTION OF STRUCTURES THROUGH METAHEURISTIC HARMONY SEARCH ALGORITHM
Vulnerability assessment of structures encounter many uncertainties like seismic excitations intensity and response of structures. The most common approach adopted to deal with these uncertainties is vulnerability assessment through fragility functions. Fragility functions exhibit the probability of exceeding a state namely performance-level as a function of seismic intensity. A common approach...
متن کاملA new hybrid conjugate gradient algorithm for unconstrained optimization
In this paper, a new hybrid conjugate gradient algorithm is proposed for solving unconstrained optimization problems. This new method can generate sufficient descent directions unrelated to any line search. Moreover, the global convergence of the proposed method is proved under the Wolfe line search. Numerical experiments are also presented to show the efficiency of the proposed algorithm, espe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Telecommunication Systems
دوره 46 شماره
صفحات -
تاریخ انتشار 2011